A Scalable Gas-Particle Flow Simulation Tool for Lander Plume-Surface Interaction and Debris Prediction, Phase I

Metadata Updated: November 12, 2020

Spacecraft propulsive landings on unprepared regolith present in extra-terrestrial environments pose a high risk for space exploration missions. Plume/regolith interaction results in (1) the liberation of dust and debris particles that may collide with the landing vehicle and (2) craters whose shape itself can influence vehicle dynamics. To investigate such gas-granular interactions for large-scale problems using standard Lagrangian approach, particles on the order of billions would need to be modelled to account for large landing areas, making the approach impractical. An effective alternative is to use an Eulerian-Eulerian approach where the granular mixture is represented using a two-fluid model and the granular material physics are considered using constituent relations. This effort aims to provide a state-of-the-art Eulerian-Eulerian approach with novel granular material models in the highly scalable computational framework Loci used by NASA engineers. At the end of Phase I, a massively parallel Loci-based version of a gas-granular flow solver featuring compressible flow, single gas species, and novel granular material models for spherical and irregular (single-component) particle mixture will be developed and demonstrated, with a TRL starting at 2 and ending at 4. Phase II effort will add higher model fidelity to the gas phase with a multi-component approach, an extension of the granular models for poly-disperse mixtures, overset-mesh with six degrees-of-freedom for lander vehicle motion, and compatibility to other Loci-based tools and modules such as CHEM.


Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_94499
Data First Published 2019-08-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Homepage URL https://techport.nasa.gov/view/94499
Program Code 026:027
Source Datajson Identifier True
Source Hash 97c73f5cea57a2c58e35fe352701c1a2c8dcc5fd
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.