Compact and Highly Efficient Multi-Purpose Laser

Metadata Updated: November 12, 2020

Many future NASA sensors will employ lasers to measure parameters of the atmospheres and surfaces of Earth and other planets, and to assist navigation and operation of space vehicles and aircraft. These sensors would benefit tremendously from increases in efficiency and laser power, with corresponding decreases in mass and power budgets. A new laser concept capable of generating relatively high pulse energies with over an order of magnitude higher efficiency and about a third of the mass of current lasers is being developed. Conventional solid-state lasers can generate high pulse energies but suffer from low efficiency. Fiber lasers offer optimal efficiency, but they cannot produce required pulse energies for most NASA applications. A novel hybrid fiber/solid state laser for generating relatively high pulse energies with over an order of magnitude higher efficiency and about a third of the mass of current lasers is proposed. High spatial and spectral beam quality of the laser can improve the instrument sensitivity and precision. The new laser architecture can be implemented at any of the fundamental wavelengths of 1.0, 1.5, or 2.0 microns. The successful demonstration of this novel laser will profoundly affect the design of all infrared lasers for a wide range of applications from medical to military, and from telecommunication to manufacturing. Due to much reduced power, size, and mass, this laser will allow for significant cost saving in deployment of instruments in space thus creating new opportunities for Earth and planetary observation systems.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Maintainer
Identifier TECHPORT_34781
Data First Published 2015-10-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Homepage URL https://techport.nasa.gov/view/34781
Program Code 026:027
Source Datajson Identifier True
Source Hash e6a0755f2c5b3b1d6b9fd00eb58ae130aca612e3
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.