Compact Low-Power Driver for Deformable Mirror Systems, Phase I

Metadata Updated: November 12, 2020

Boston Micromachines Corporation (BMC), a leading developer of unique, high-resolution micromachined deformable mirrors (DMs), will develop a compact, low-power, high-voltage multiplexed driver suitable for integration with those DMs in space-based wavefront control applications. The proposed driver architecture will drastically reduce power consumption and size. Based on parameters measured using an existing 993-actuator DM that BMC developed for NASA in support of the Terrestrial Planet Finding Coronagraph program, and using projections from preliminary experiments conducted for this proposal, we predict at minimum a hundred-fold reduction in power consumption in the prototype driver to be produced in Phase I, and a tenfold reduction in size, while maintaining high precision, reducing electronics driver cost, and reducing interconnection complexity. Additional reductions in power consumption and another tenfold reduction in size will follow in Phase II work when the core design is transferred to implementation in application-specific integrated circuit (ASIC) format.

Phase I work involves collaboration between BMC and Boston University (BU). A leading electrostatics research group at BU will develop a novel multiplexed high-voltage driver architecture that comprises a significant departure from previous MEMS DM drivers. A single D/A converter and high-voltage amplifier module will drive the entire array through a row-column addressing scheme. This approach will reduce operational power consumption by two orders of magnitude from ~80W to ~0.8W. We will also integrate the DM and the mirror into a compact package. The MEMS DM and the electronics will be co-mounted on the same PC board. This will reduce driver volume by an order of magnitude, from ~20,000cc to 2000cc. It will also eliminate the need for high density cabling and buffer amplifiers used to drive them, simplifying system operation and further reducing power consumption and size.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_9058
Data First Published 2010-07-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Homepage URL
Program Code 026:027
Source Datajson Identifier True
Source Hash 26c7e28fa8710c2ce07c143eef1b815b88d6a43d
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.