Differential Terahertz Imaging Methods for Enhanced Detection of Subsurface Features, Flaws, and Damage, Phase I

Metadata Updated: November 12, 2020

Picometrix proposes to demonstrate the feasibility of using differential time domain terahertz imaging methods to enhance the contrast and detectability of features such as kissing disbonds and cracks that in conventional THz imaging only weakly reflect or scatter the THz pulses. The goal of the project is to develop methods of shearographic loading of the samples, and use the penetrating THz pulses to detect the subsurface deformation of the defects in the differential THz images with better contrast than traditional THz imaging. In a "kissing" disbond there is a region where the two sides of the material are not adhered, but the space between the two sides are essentially in perfect optical contact. When the space between the two interfaces is so optically "thin," the reflections of the THz pulses from the top and bottom surfaces cancel each other out. The defect signature is only weakly detectable compared to when the spacing is greater than the minimum THz wavelength (approx. 50-150 microns), the shearographic loading will microscopically deform defects, changing the small THz reflections in the loaded vs. unloaded state. The differential images should subtract all background clutter and highlight the microscopic subsurface distortion of the defects under loading.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Maintainer
Identifier TECHPORT_89478
Data First Published 2016-12-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Homepage URL https://techport.nasa.gov/view/89478
Program Code 026:027
Source Datajson Identifier True
Source Hash 577b557208f0e4fe6437f5f40ac1579c31f2dc6e
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.