Geology and geomorphology--Offshore of Half Moon Bay Map Area, California

Metadata Updated: November 12, 2020

This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Geology_OffshoreHalfMoonBay.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. The continental shelf within California's State waters in the Half Moon Bay area is shallow (0 to ~55 m) and flat with a very gentle (less than 0.5 degrees) offshore dip. The morphology and geology of this shelf result from the interplay between local tectonics, sea-level rise, sedimentary processes, and oceanography. Tectonic influences are related to local faulting and uplift (see below). Sea level has risen about 125 to 130 m over the last ~21,000 years (for example, Lambeck and Chappel, 2001; Gornitz, 2009), leading to progressive eastward migration (a few tens of km) of the shoreline and wave-cut platform and associated transgressive erosion and deposition (for example, Catuneanu, 2006). The Offshore of Half Moon Bay map area is now an open-ocean shelf that is subjected to full, and sometimes severe, wave energy and strong currents. Given the relatively shallow depths and high energy, modern shelf deposits are mostly sand (unit Qms). More coarse-grained sands and gravels (units Qmss and Qmsc) are primarily recognized on the basis of bathymetry and high backscatter (Bathymetry; Backscatter A [8101]; and Backscatter B [7125]--Offshore Half Moon Bay, California, DS 781). Unit Qmsc occurs only as a nearshore bar (~ 10 m water depth) just south of the Pillar Point Harbor jetty. Unit Qmss forms erosional lags in rippled scour depressions (see, for example, Cacchione and others, 1984) and is more extensive and distributed, with the largest concentrations occurring at water depths of 30 to 55 m offshore Pillar Point, and in the nearshore (depths of 5 to 15 m) south of Pillar Point Harbor and north-northwest of Pillar Point. Such rippled-scour depressions are common along this stretch of the California coast where offshore sandy sediment can be relatively thin (thus unable to fill the depressions) due to both lack of sediment supply from rivers and to significant sediment erosion and offshore transport during large winter storms. Although the general areas in which both unit Qmss scour depressions and unit Qmsc bars occur are not likely to change substantially, the boundaries of the unit(s) are likely ephemeral, changing seasonally and during significant storm events. Areas where shelf sediments form thin (< 2.5 m or less) veneers over low relief Purisima Formation (upper Miocene and Pliocene) or undifferentiated Cretaceous and (or) Tertiary bedrock are mapped as units Qms/Tp and Qms/TKu. These areas are recognized based on the combination of flat relief, continuity with moderate to high relief bedrock outcrops, high-resolution seismic-reflection data (see field activity S-15-10-NC), and in some cases moderate to high backscatter. These units are regarded as ephemeral and dynamic sediment layers that may or may not be present at a specific location based on storms, seasonal/annual patterns of sediment movement, or longer-term climate cycles. In a nearby similarly high-energy setting, Storlazzi and others (2011) have described seasonal burial and exhumation of submerged bedrock in northern Monterey Bay. Offshore bedrock outcrops are mapped as the upper Miocene and Pliocene Purisima Formation (unit Tp), the Cretaceous granitic rocks of Montara Mountain (unit Kgr), and undivided sedimentary rocks of Cretaceous and (or) Tertiary age (unit TKu). These units are delineated through extending outcrops and trends from mapped onshore geology and from their distinctive surface textures as revealed by high-resolution bathymetry (Bathymetry--Offshore Half Moon Bay, California, DS 781). Purisima Formation outcrops form distinctive straight to curved "ribs," caused by differential erosion of more- and less-resistant lithologies (for example, sandstone and mudstone). In contrast, granitic rocks have a densely cross-fractured surface texture. Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data. The bathymetry and backscatter data were collected between 2006 and 2010. References Cited Cacchione, D.A., Drake, D.E., Grant, W.D., and Tate, G.B., 1984. Rippled scour depressions of the inner continental shelf off central California: Journal of Sedimentary Petrology, v 54, p. 1280-1291. Catuneanu, O., 2006, Principles of Sequence Stratigraphy: Amsterdam, Elsevier, 375 p. Gornitz, V., 2009, Sea level change, post-glacial, in Gornitz, V., ed., Encyclopedia of Paleoclimatology and Ancient Environments: Encyclopedia of Earth Sciences Series. Springer, pp. 887-893. Lambeck, K., and Chappell, J., 2001, Sea level change through the last glacial cycle: Science, v. 292, p. 679-686.

Access & Use Information

License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Date April 26, 2018
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Reference Date(s) January 1, 2013 (publication)
Frequency Of Update notPlanned

Metadata Source

Harvested from DOI Open Data

Additional Metadata

Resource Type Dataset
Metadata Date April 26, 2018
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Reference Date(s) January 1, 2013 (publication)
Responsible Party USGS Pacific Coastal and Marine Science Center (Point of Contact)
Contact Email
Guid
Access Constraints Use Constraints: This information is not intended for navigational purposes. Read and fully comprehend the metadata prior to data use. Uses of these data should not violate the spatial resolution of the data. Where these data are used in combination with other data of different resolution, the resolution of the combined output will be limited by the lowest resolution of all the data. Acknowledge the U.S. Geological Survey in products derived from these data. Share data products developed using these data with the U.S. Geological Survey. This database has been approved for release and publication by the Director of the USGS. Although this database has been subjected to rigorous review and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. Furthermore, it is released on condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use. Although this Federal Geographic Data Committee-compliant metadata file is intended to document these data in nonproprietary form, as well as in ArcInfo format, this metadata file may include some ArcInfo-specific terminology., Access Constraints: If physical samples or materials are available, constraints on their on-site access are described in "WR CMG Sample Distribution Policy" at URL: http://walrus.wr.usgs.gov/infobank/programs/html/main/sample-dist-policy.html
Bbox East Long -122.42
Bbox North Lat 37.55
Bbox South Lat 37.38
Bbox West Long -122.58
Coupled Resource
Frequency Of Update notPlanned
Graphic Preview Description Geology offshore Half Moon Bay.
Graphic Preview File <http://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/images/Geology_OffshoreHalfMoonBay.jpg>
Graphic Preview Type JPEG
Licence Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty.
Metadata Language
Metadata Type geospatial
Progress completed
Spatial Data Service Type
Spatial Reference System
Spatial Harvester True
Temporal Extent Begin 2006-01-01
Temporal Extent End 2010-01-01

Didn't find what you're looking for? Suggest a dataset here.