Radiation Protection and Architecture Utilizing High Temperature Superconducting Magnets

Metadata Updated: November 12, 2020

This study will explore the effectiveness of using electromagnets to protect a habitat from radiation through active radiation shielding.Active radiation shielding concepts have been studied for many decades as a means to protect crew from deep space radiation environments. These studies yield architectures that are significantly massive and too costly to launch and assemble in space largely due to the magnet size and field strength required to deflect galactic cosmic radiation (GCR) spectra and solar particle events (SPE) for meaningful crew protection in space. Since then state-of-the-art superconducting technology has made great strides in performance including higher temperature superconductivity (HTS) and greater current carrying capacity allowing for simpler magnet cooling systems and greater magnetic field strength per unit mass.  During Phase I, the pros and cons of more than 20 potential coil configurations were analyzed by Advanced Magnet Lab (AML) personnel and INFN with the University of Perugia. Substantial progress has been made to develop a feasible solution for the required large HTS coils. The work performed showed that single layer expandable coils with diameters of 4 to 8 m and lengths of 15 to 20 m, arranged in a 6-around-1 configuration constitute the best solution among all concepts analyzed. The single compensator coil closely surrounds the habitat serving as a habitat thermal radiation shield for the outer coils and compensates for outer coil fringe fields trying to enter the habitat. AML has secured separate funding from Space Florida to demonstrate the concept of expandable HTS coils. The phase 2 proposal effort will continue with the creative method of the "expandable" coil concept. The team will refine the structural concept to house such a coil assembly. This will include a more comprehensive structural loads analysis and structural design to manage field forces on each of the coils and the habitat. Concept design and analysis will include effects of the compensation coil on the entire system. The team will evaluate safety implications for the phase 1 coil concept including quench performance, fault scenarios and mitigation strategies.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_11572
Data First Published 2014-09-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Homepage URL https://techport.nasa.gov/view/11572
Program Code 026:027
Source Datajson Identifier True
Source Hash 05e2cf1154d668eefc1888d9531c3b94c36e09e3
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.