Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies

Metadata Updated: November 12, 2020

The goal of this effort is to develop a mission architecture that allows the systematic and affordable in-situ exploration of small Solar System bodies, such as asteroids, comets, and Martian moons. Our architecture relies on the novel concept of spacecraft/rover hybrids, which are surface mobility platforms capable of achieving large surface coverage (by attitude-controlled hops, akin to spacecraft flight), fine mobility (by tumbling), and coarse instrument pointing (by changing orientation relative to the ground) in the low-gravity environments (micro-g to milli-g) of small bodies. The actuation of the hybrids relies on spinning three internal flywheels, which allows all subsystems to be packaged in one sealed enclosure and enables the platforms to be minimalistic, thereby reducing the cost of the mission architecture. The hybrids would be deployed from a mother spacecraft, which would then act as a communication relay to Earth and would aid the in-situ assets with tasks such as localization and navigation. In Phase I, we demonstrated that the bounding assumptions behind our proposed mission architecture are reasonable, and have a sound scientific and engineering basis. Phase II has two objectives. First, to advance from TRL 2 to TRL 3.5 the mobility subsystem of the hybrids (comprising planning/control and localization/navigation), with the aid of a unique test bed for low-gravity surface mobility and parabolic flight tests on a zero-g airplane. Second, to study at a conceptual level (TRL 2) system engineering aspects for the hybrids, with a focus on power, in the context of a mission to Mars' moon Phobos. Collectively, our study aims to demonstrate that exploration via controlled mobility in low-gravity environments is technically possible, economically feasible, and would enable a focused, yet compelling set of science objectives aligned with NASA's interests in science and human exploration. Indeed, while controlled mobility in low-gravity environments was identified by the National Research Council in 2012 as one of NASA's high priorities for technology development, it has never been demonstrated in a high-fidelity low-gravity test bed. Hence, this proposal, if successful, would provide a sought-after and currently unavailable capability for small bodies exploration.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_16965
Data First Published 2016-08-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Homepage URL
Program Code 026:027
Source Datajson Identifier True
Source Hash 0816b93c465dcd72dae48bf07c8b0be1602565f3
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.